
Stack Traces in Haskell

Arash Rouhani

Chalmers University of Technology

Master thesis presentation
March 21, 2014

Contents

• Motivation
• Background
• The attempt in August 2013
• Contribution

Contents Arash Rouhani – Thesis presentation 2/32

An old problem . . .

• Try running this program:

1 main = print (f 10)
2 f x = ... g y ...
3 g x = ... h y ...
4 h x = ... head [] ...

• You get
$ runghc Crash.hs
Crash.hs: Prelude.head: empty list

• But you want
$ runghc Crash.hs
Crash.hs: Prelude.head: empty list

in function h
in function g
in function f
in function main

Motivation Arash Rouhani – Thesis presentation 3/32

An old problem . . .

• Try running this program:

1 main = print (f 10)
2 f x = ... g y ...
3 g x = ... h y ...
4 h x = ... head [] ...

• You get
$ runghc Crash.hs
Crash.hs: Prelude.head: empty list

• But you want
$ runghc Crash.hs
Crash.hs: Prelude.head: empty list

in function h
in function g
in function f
in function main

Motivation Arash Rouhani – Thesis presentation 3/32

An old problem . . .

• Try running this program:

1 main = print (f 10)
2 f x = ... g y ...
3 g x = ... h y ...
4 h x = ... head [] ...

• You get
$ runghc Crash.hs
Crash.hs: Prelude.head: empty list

• But you want
$ runghc Crash.hs
Crash.hs: Prelude.head: empty list

in function h
in function g
in function f
in function main

Motivation Arash Rouhani – Thesis presentation 3/32

. . . with new constraints

• Should have very low overhead
• If you hesitate to use it in production, I’ve failed
• Not done for Haskell before, all earlier work have an overhead.

Motivation Arash Rouhani – Thesis presentation 4/32

Background contents

• Is stack traces harder for Haskell?
• Will the implementation only work for GHC?

Background Arash Rouhani – Thesis presentation 5/32

Laziness

• Consider the code

1 myIf :: Bool -> a -> a -> a
2 myIf True x y = x
3 myIf False x y = y
4

5 -- Then evaluate
6 myIf True 5 (error "evil crash")

• Will the usage of error make this crash?

• No, (error "evil crash") is a delayed computation.

Background — Haskell Arash Rouhani – Thesis presentation 6/32

Laziness

• Consider the code

1 myIf :: Bool -> a -> a -> a
2 myIf True x y = x
3 myIf False x y = y
4

5 -- Then evaluate
6 myIf True 5 (error "evil crash")

• Will the usage of error make this crash?
• No, (error "evil crash") is a delayed computation.

Background — Haskell Arash Rouhani – Thesis presentation 6/32

Case expressions

• Consider the code

1 case myBool of
2 True -> this
3 Flase -> that

• So is pattern matching just like switch-case in C?

• NO!
• myBool can be a delayed computation, aka a thunk

Background — Haskell Arash Rouhani – Thesis presentation 7/32

Case expressions

• Consider the code

1 case myBool of
2 True -> this
3 Flase -> that

• So is pattern matching just like switch-case in C?
• NO!

• myBool can be a delayed computation, aka a thunk

Background — Haskell Arash Rouhani – Thesis presentation 7/32

Case expressions

• Consider the code

1 case myBool of
2 True -> this
3 Flase -> that

• So is pattern matching just like switch-case in C?
• NO!
• myBool can be a delayed computation, aka a thunk

Background — Haskell Arash Rouhani – Thesis presentation 7/32

History of GHC

• Compiles Haskell to machine code since 1989
• The only Haskell compiler people care about

Background — GHC Arash Rouhani – Thesis presentation 8/32

Usage

• Compile and run (just like any other compiler)
$ ghc --make Code.hs
...
$./a.out
123

Background — GHC Arash Rouhani – Thesis presentation 9/32

The magical function

• My work assumes the existence of

1 getDebugInfo :: Ptr Instruction -- Pointer to runnable machine code
2 -> IO DebugInfo -- Haskell function name etc.

• This is a recent contribution not yet merged in HEAD
• Author is Peter Wortmann, part of his PhD at Leeds
• In essence, 95% of the job to implement stack traces was

already done!

Background — GHC— Magic function Arash Rouhani – Thesis presentation 10/32

http://www.personal.leeds.ac.uk/~scpmw/site.html

The magical function

• My work assumes the existence of

1 getDebugInfo :: Ptr Instruction -- Pointer to runnable machine code
2 -> IO DebugInfo -- Haskell function name etc.

• This is a recent contribution not yet merged in HEAD
• Author is Peter Wortmann, part of his PhD at Leeds

• In essence, 95% of the job to implement stack traces was
already done!

Background — GHC— Magic function Arash Rouhani – Thesis presentation 10/32

http://www.personal.leeds.ac.uk/~scpmw/site.html

The magical function

• My work assumes the existence of

1 getDebugInfo :: Ptr Instruction -- Pointer to runnable machine code
2 -> IO DebugInfo -- Haskell function name etc.

• This is a recent contribution not yet merged in HEAD
• Author is Peter Wortmann, part of his PhD at Leeds
• In essence, 95% of the job to implement stack traces was

already done!

Background — GHC— Magic function Arash Rouhani – Thesis presentation 10/32

http://www.personal.leeds.ac.uk/~scpmw/site.html

The compilation pipeline

• Well GHC works like this:

Haskell GHC Executable

• Or rather like this

Object
Files

ExecutableHaskell Core STG Cmm Assembly

• We say that GHC has many Intermediate Representations

Background — GHC— Magic function Arash Rouhani – Thesis presentation 11/32

The compilation pipeline

• Well GHC works like this:

Haskell GHC Executable

• Or rather like this

Object
Files

ExecutableHaskell Core STG Cmm Assembly

• We say that GHC has many Intermediate Representations

Background — GHC— Magic function Arash Rouhani – Thesis presentation 11/32

The compilation pipeline

• Well GHC works like this:

Haskell GHC Executable

• Or rather like this

Object
Files

ExecutableHaskell Core STG Cmm Assembly

• We say that GHC has many Intermediate Representations

Background — GHC— Magic function Arash Rouhani – Thesis presentation 11/32

So there must be debug data!

• Again:

Haskell GHC Executable

• The intuition behind getDebugInfo is:

Haskell ExecutablegetDebugInfo

• For this, we must retain debug data in the binary!

Background — GHC— Magic function Arash Rouhani – Thesis presentation 12/32

So there must be debug data!

• Again:

Haskell GHC Executable

• The intuition behind getDebugInfo is:

Haskell ExecutablegetDebugInfo

• For this, we must retain debug data in the binary!

Background — GHC— Magic function Arash Rouhani – Thesis presentation 12/32

So there must be debug data!

• Again:

Haskell GHC Executable

• The intuition behind getDebugInfo is:

Haskell ExecutablegetDebugInfo

• For this, we must retain debug data in the binary!
Background — GHC— Magic function Arash Rouhani – Thesis presentation 12/32

Lets get to work!

addition :: Int -> Int -> Int
addition x y = (x + y)

addition_r8m :: GHC.Types.Int -> GHC.Types.Int -> GHC.Types.Int
[GblId, Arity=2, Str=DmdType]
addition_r8m =
 \ (x_a9l :: GHC.Types.Int) (y_a9m :: GHC.Types.Int) ->
 GHC.Num.+ @ GHC.Types.Int GHC.Num.$fNumInt x_a9l y_a9m

addition_r8m :: GHC.Types.Int -> GHC.Types.Int -> GHC.Types.Int
[GblId, Arity=2, Str=DmdType, Unf=OtherCon []] =
 sat-only \r srt:SRT:[(r9o, GHC.Num.$fNumInt)] [x_smq y_smr]
 GHC.Num.+ GHC.Num.$fNumInt x_smq y_smr;

S
uc

ce
ss

iv
e

re
ca

st
in

gs

Haskell

Core

...
cmG:
 R2 = GHC.Num.$fNumInt_closure; // CmmAssign
 I64[(old + 32)] = stg_ap_pp_info; // CmmStore
 P64[(old + 24)] = _smo::P64; // CmmStore
 P64[(old + 16)] = _smp::P64; // CmmStore
 call GHC.Num.+_info(R2) args: 32, res: 0, upd: 8; // CmmCall
...

Stg

Cmm

...
_cmG:
 movq %r14,%rax
 movl $GHC.Num.$fNumInt_closure,%r14d
 movq $stg_ap_pp_info,-24(%rbp)
 movq %rax,-16(%rbp)
 movq %rsi,-8(%rbp)
 addq $-24,%rbp
 jmp GHC.Num.+_info
...

x64
assembly

addition :: Int -> Int -> Int
addition x y = (x + y)

addition_r8m :: GHC.Types.Int -> GHC.Types.Int -> GHC.Types.Int
[GblId, Arity=2, Str=DmdType]
 \ (x_a9l :: GHC.Types.Int) (y_a9m :: GHC.Types.Int) ->
 src<stages.hs:3:1-22>
 GHC.Num.+
 @ GHC.Types.Int
 GHC.Num.$fNumInt
 (src<stages.hs:3:17> x_a9l)
 (src<stages.hs:3:21> y_a9m)

addition_r8m :: GHC.Types.Int -> GHC.Types.Int -> GHC.Types.Int
[GblId, Arity=2, Str=DmdType, Unf=OtherCon []] =
 sat-only \r srt:SRT:[(r9o, GHC.Num.$fNumInt)] [x_smq y_smr]
 src<stages.hs:3:1-22>
 src<stages.hs:3:17>
 src<stages.hs:3:21> GHC.Num.+ GHC.Num.$fNumInt x_smq y_smr;

S
uc

ce
ss

iv
e

re
ca

st
in

gs

Haskell

Core

...
 //tick src<stages.hs:3:1-22>
 //tick src<stages.hs:3:17>
 //tick src<stages.hs:3:21>
...
CmG:
 R2 = GHC.Num.$fNumInt_closure; // CmmAssign
 I64[(old + 32)] = stg_ap_pp_info; // CmmStore
 P64[(old + 24)] = _smo::P64; // CmmStore
 P64[(old + 16)] = _smp::P64; // CmmStore
 call GHC.Num.+_info(R2) args: 32, res: 0, upd: 8; // CmmCall
...

Stg

Cmm

...
_cmG:
 movq %r14,%rax
 movl $GHC.Num.$fNumInt_closure,%r14d
 movq $stg_ap_pp_info,-24(%rbp)
 movq %rax,-16(%rbp)
 movq %rsi,-8(%rbp)
 addq $-24,%rbp
 jmp GHC.Num.+_info
...

x64
assembly

Background — GHC— Magic function Arash Rouhani – Thesis presentation 13/32

What happened?

addition :: Int -> Int -> Int
addition x y = (x + y)

addition_r8m :: GHC.Types.Int -> GHC.Types.Int -> GHC.Types.Int
[GblId, Arity=2, Str=DmdType]
addition_r8m =
 \ (x_a9l :: GHC.Types.Int) (y_a9m :: GHC.Types.Int) ->
 GHC.Num.+ @ GHC.Types.Int GHC.Num.$fNumInt x_a9l y_a9m

addition_r8m :: GHC.Types.Int -> GHC.Types.Int -> GHC.Types.Int
[GblId, Arity=2, Str=DmdType, Unf=OtherCon []] =
 sat-only \r srt:SRT:[(r9o, GHC.Num.$fNumInt)] [x_smq y_smr]
 GHC.Num.+ GHC.Num.$fNumInt x_smq y_smr;

S
uc

ce
ss

iv
e

re
ca

st
in

gs

Haskell

Core

...
cmG:
 R2 = GHC.Num.$fNumInt_closure; // CmmAssign
 I64[(old + 32)] = stg_ap_pp_info; // CmmStore
 P64[(old + 24)] = _smo::P64; // CmmStore
 P64[(old + 16)] = _smp::P64; // CmmStore
 call GHC.Num.+_info(R2) args: 32, res: 0, upd: 8; // CmmCall
...

Stg

Cmm

...
_cmG:
 movq %r14,%rax
 movl $GHC.Num.$fNumInt_closure,%r14d
 movq $stg_ap_pp_info,-24(%rbp)
 movq %rax,-16(%rbp)
 movq %rsi,-8(%rbp)
 addq $-24,%rbp
 jmp GHC.Num.+_info
...

x64
assembly

addition :: Int -> Int -> Int
addition x y = (x + y)

addition_r8m :: GHC.Types.Int -> GHC.Types.Int -> GHC.Types.Int
[GblId, Arity=2, Str=DmdType]
 \ (x_a9l :: GHC.Types.Int) (y_a9m :: GHC.Types.Int) ->
 src<stages.hs:3:1-22>
 GHC.Num.+
 @ GHC.Types.Int
 GHC.Num.$fNumInt
 (src<stages.hs:3:17> x_a9l)
 (src<stages.hs:3:21> y_a9m)

addition_r8m :: GHC.Types.Int -> GHC.Types.Int -> GHC.Types.Int
[GblId, Arity=2, Str=DmdType, Unf=OtherCon []] =
 sat-only \r srt:SRT:[(r9o, GHC.Num.$fNumInt)] [x_smq y_smr]
 src<stages.hs:3:1-22>
 src<stages.hs:3:17>
 src<stages.hs:3:21> GHC.Num.+ GHC.Num.$fNumInt x_smq y_smr;

S
uc

ce
ss

iv
e

re
ca

st
in

gs

Haskell

Core

...
 //tick src<stages.hs:3:1-22>
 //tick src<stages.hs:3:17>
 //tick src<stages.hs:3:21>
...
CmG:
 R2 = GHC.Num.$fNumInt_closure; // CmmAssign
 I64[(old + 32)] = stg_ap_pp_info; // CmmStore
 P64[(old + 24)] = _smo::P64; // CmmStore
 P64[(old + 16)] = _smp::P64; // CmmStore
 call GHC.Num.+_info(R2) args: 32, res: 0, upd: 8; // CmmCall
...

Stg

Cmm

...
_cmG:
 movq %r14,%rax
 movl $GHC.Num.$fNumInt_closure,%r14d
 movq $stg_ap_pp_info,-24(%rbp)
 movq %rax,-16(%rbp)
 movq %rsi,-8(%rbp)
 addq $-24,%rbp
 jmp GHC.Num.+_info
...

x64
assembly

• Did we just drop the debug data we worked so hard for?

Background — GHC— Magic function Arash Rouhani – Thesis presentation 14/32

This is a solved problem, of course!

• DWARF to the rescue!
< 1><0x0000008d> DW_TAG_subprogram

DW_AT_name "addition"
DW_AT_MIPS_linkage_name "r8m_info"
DW_AT_external no
DW_AT_low_pc 0x00000020
DW_AT_high_pc 0x00000054
DW_AT_frame_base DW_OP_call_frame_cfa

< 2><0x000000b3> DW_TAG_lexical_block
DW_AT_name "cmG_entry"
DW_AT_low_pc 0x00000029
DW_AT_high_pc 0x0000004b

< 2><0x000000cf> DW_TAG_lexical_block
DW_AT_name "cmF_entry"
DW_AT_low_pc 0x0000004b
DW_AT_high_pc 0x00000054

• DWARF lives side by side in another section of the binary.
Therefore it does not interfere.

Background — GHC— Magic function Arash Rouhani – Thesis presentation 15/32

This is a solved problem, of course!

• DWARF to the rescue!
< 1><0x0000008d> DW_TAG_subprogram

DW_AT_name "addition"
DW_AT_MIPS_linkage_name "r8m_info"
DW_AT_external no
DW_AT_low_pc 0x00000020
DW_AT_high_pc 0x00000054
DW_AT_frame_base DW_OP_call_frame_cfa

< 2><0x000000b3> DW_TAG_lexical_block
DW_AT_name "cmG_entry"
DW_AT_low_pc 0x00000029
DW_AT_high_pc 0x0000004b

< 2><0x000000cf> DW_TAG_lexical_block
DW_AT_name "cmF_entry"
DW_AT_low_pc 0x0000004b
DW_AT_high_pc 0x00000054

• DWARF lives side by side in another section of the binary.
Therefore it does not interfere.

Background — GHC— Magic function Arash Rouhani – Thesis presentation 15/32

Introduction to the Execution Stack

• GHC chooses to implement Haskell with a stack.

• It does not use the normal “C-stack”
• GHC maintains its own stack, we call it the execution stack.

Background — GHC— The Stack Arash Rouhani – Thesis presentation 16/32

Introduction to the Execution Stack

• GHC chooses to implement Haskell with a stack.
• It does not use the normal “C-stack”

• GHC maintains its own stack, we call it the execution stack.

Background — GHC— The Stack Arash Rouhani – Thesis presentation 16/32

Introduction to the Execution Stack

• GHC chooses to implement Haskell with a stack.
• It does not use the normal “C-stack”
• GHC maintains its own stack, we call it the execution stack.

Background — GHC— The Stack Arash Rouhani – Thesis presentation 16/32

Similar but not same

• Unlike C, we do not push something on the stack when
entering a function!

• Unlike C, we have cheap green threads, one stack per thread!

Background — GHC— The Stack Arash Rouhani – Thesis presentation 17/32

Similar but not same

• Unlike C, we do not push something on the stack when
entering a function!

• Unlike C, we have cheap green threads, one stack per thread!

Background — GHC— The Stack Arash Rouhani – Thesis presentation 17/32

What is on it then?

• Recall this code:

1 case myBool of
2 True -> this
3 Flase -> that

• How is this implemented? Let’s think for a while . . .
• Aha! We can push a continuation on the stack and jump to
the code of myBool!

• We call this a case continuation.

Background — GHC— The Stack Arash Rouhani – Thesis presentation 18/32

What is on it then?

• Recall this code:

1 case myBool of
2 True -> this
3 Flase -> that

• How is this implemented? Let’s think for a while . . .

• Aha! We can push a continuation on the stack and jump to
the code of myBool!

• We call this a case continuation.

Background — GHC— The Stack Arash Rouhani – Thesis presentation 18/32

What is on it then?

• Recall this code:

1 case myBool of
2 True -> this
3 Flase -> that

• How is this implemented? Let’s think for a while . . .
• Aha! We can push a continuation on the stack and jump to
the code of myBool!

• We call this a case continuation.

Background — GHC— The Stack Arash Rouhani – Thesis presentation 18/32

What is on it then?

• Recall this code:

1 case myBool of
2 True -> this
3 Flase -> that

• How is this implemented? Let’s think for a while . . .
• Aha! We can push a continuation on the stack and jump to
the code of myBool!

• We call this a case continuation.

Background — GHC— The Stack Arash Rouhani – Thesis presentation 18/32

Peter’s demonstration

• In August 2013 Peter Wortmann showed a proof of concept
stack trace based on his work.

• My master thesis is entirely based on Peter’s work.

The breakthrough in August 2013 Arash Rouhani – Thesis presentation 19/32

Peter’s demonstration

• In August 2013 Peter Wortmann showed a proof of concept
stack trace based on his work.

• My master thesis is entirely based on Peter’s work.

The breakthrough in August 2013 Arash Rouhani – Thesis presentation 19/32

The stack trace . . .

• For this Haskell code:

1 main :: IO ()
2 main = do a
3 print 2
4

5 a, b :: IO ()
6 a = do b
7 print 20
8

9 b = do print (crashSelf 2)
10 print 200
11

12 crashSelf :: Int -> Int
13 crashSelf 0 = 1 ‘div‘ 0
14 crashSelf x = crashSelf (x - 1)

The breakthrough in August 2013 Arash Rouhani – Thesis presentation 20/32

. . . is terrible!

• We get:
0: stg_bh_upd_frame_ret
1: stg_bh_upd_frame_ret
2: stg_bh_upd_frame_ret
3: showSignedInt
4: stg_upd_frame_ret
5: writeBlocks
6: stg_ap_v_ret
7: bindIO
8: bindIO
9: bindIO

10: stg_catch_frame_ret

• We want:
0: crashSelf
1: crashSelf
2: print
3: b
4: a
5: main

The breakthrough in August 2013 Arash Rouhani – Thesis presentation 21/32

. . . is terrible!

• We get:
0: stg_bh_upd_frame_ret
1: stg_bh_upd_frame_ret
2: stg_bh_upd_frame_ret
3: showSignedInt
4: stg_upd_frame_ret
5: writeBlocks
6: stg_ap_v_ret
7: bindIO
8: bindIO
9: bindIO

10: stg_catch_frame_ret

• We want:
0: crashSelf
1: crashSelf
2: print
3: b
4: a
5: main

The breakthrough in August 2013 Arash Rouhani – Thesis presentation 21/32

Then what did Arash do?

• In addition to an unreadable stack trace, the time and memory
complexity of stack reification can be improved.

• The stack reification in Peter Wortmann’s demonstration is
linear in time and memory.

• Obviously, if you throw a stack and then print it. It can not be
worse than linear in time.

• But, if you throw a stack and do not print it, a reification that
is done lazily would be done in constant time.

Contribution Arash Rouhani – Thesis presentation 22/32

Then what did Arash do?

• In addition to an unreadable stack trace, the time and memory
complexity of stack reification can be improved.

• The stack reification in Peter Wortmann’s demonstration is
linear in time and memory.

• Obviously, if you throw a stack and then print it. It can not be
worse than linear in time.

• But, if you throw a stack and do not print it, a reification that
is done lazily would be done in constant time.

Contribution Arash Rouhani – Thesis presentation 22/32

Then what did Arash do?

• In addition to an unreadable stack trace, the time and memory
complexity of stack reification can be improved.

• The stack reification in Peter Wortmann’s demonstration is
linear in time and memory.

• Obviously, if you throw a stack and then print it. It can not be
worse than linear in time.

• But, if you throw a stack and do not print it, a reification that
is done lazily would be done in constant time.

Contribution Arash Rouhani – Thesis presentation 22/32

Then what did Arash do?

• In addition to an unreadable stack trace, the time and memory
complexity of stack reification can be improved.

• The stack reification in Peter Wortmann’s demonstration is
linear in time and memory.

• Obviously, if you throw a stack and then print it. It can not be
worse than linear in time.

• But, if you throw a stack and do not print it, a reification that
is done lazily would be done in constant time.

Contribution Arash Rouhani – Thesis presentation 22/32

So the problems to tackle are:

• Make stack traces readable

• Make reification optimal complexity wise
• Add a Haskell interface to this

Contribution Arash Rouhani – Thesis presentation 23/32

So the problems to tackle are:

• Make stack traces readable
• Make reification optimal complexity wise

• Add a Haskell interface to this

Contribution Arash Rouhani – Thesis presentation 23/32

So the problems to tackle are:

• Make stack traces readable
• Make reification optimal complexity wise
• Add a Haskell interface to this

Contribution Arash Rouhani – Thesis presentation 23/32

We must understand the stack

• What is on the stack?

• The C stack just have return addresses and local variables.
• The Haskell stack have many different kinds of members. Case
continuations, update frames, catch frames, stm frames, stop
frame, underflow frames etc.

•

Contribution — Using the execution stack Arash Rouhani – Thesis presentation 24/32

We must understand the stack

• What is on the stack?
• The C stack just have return addresses and local variables.

• The Haskell stack have many different kinds of members. Case
continuations, update frames, catch frames, stm frames, stop
frame, underflow frames etc.

•

Contribution — Using the execution stack Arash Rouhani – Thesis presentation 24/32

We must understand the stack

• What is on the stack?
• The C stack just have return addresses and local variables.
• The Haskell stack have many different kinds of members. Case
continuations, update frames, catch frames, stm frames, stop
frame, underflow frames etc.

•

Contribution — Using the execution stack Arash Rouhani – Thesis presentation 24/32

We must understand the stack

• What is on the stack?
• The C stack just have return addresses and local variables.
• The Haskell stack have many different kinds of members. Case
continuations, update frames, catch frames, stm frames, stop
frame, underflow frames etc.

•

Contribution — Using the execution stack Arash Rouhani – Thesis presentation 24/32

Update frames

• Consider

1 powerTwo :: Int -> Int
2 powerTwo 0 = 1
3 powerTwo n = x + x
4 where x = powerTwo (n - 1)

• In GHC, thunks are memoized by default
• This is done by update frames on the stack
• Details omitted in interest of time

Contribution — Using the execution stack Arash Rouhani – Thesis presentation 25/32

Update frames

• Consider

1 powerTwo :: Int -> Int
2 powerTwo 0 = 1
3 powerTwo n = x + x
4 where x = powerTwo (n - 1)

• In GHC, thunks are memoized by default

• This is done by update frames on the stack
• Details omitted in interest of time

Contribution — Using the execution stack Arash Rouhani – Thesis presentation 25/32

Update frames

• Consider

1 powerTwo :: Int -> Int
2 powerTwo 0 = 1
3 powerTwo n = x + x
4 where x = powerTwo (n - 1)

• In GHC, thunks are memoized by default
• This is done by update frames on the stack

• Details omitted in interest of time

Contribution — Using the execution stack Arash Rouhani – Thesis presentation 25/32

Update frames

• Consider

1 powerTwo :: Int -> Int
2 powerTwo 0 = 1
3 powerTwo n = x + x
4 where x = powerTwo (n - 1)

• In GHC, thunks are memoized by default
• This is done by update frames on the stack
• Details omitted in interest of time

Contribution — Using the execution stack Arash Rouhani – Thesis presentation 25/32

New policy for reifying update frames

• So instead of saying that we have an update frame, refer to its
updatee.

0: stg_bh_upd_frame_ret -----------> 0: divZeroError
1: stg_bh_upd_frame_ret -----------> 1: crashSelf
2: stg_bh_upd_frame_ret -----------> 2: b
3: showSignedInt -----------> 3: showSignedInt
4: stg_upd_frame_ret -----------> 4: print
5: writeBlocks -----------> 5: writeBlocks
6: stg_ap_v_ret -----------> 6: stg_ap_v_ret
7: bindIO -----------> 7: bindIO
8: bindIO -----------> 8: bindIO
9: bindIO -----------> 9: bindIO

10: stg_catch_frame_ret -----------> 10: stg_catch_frame_ret

Contribution — Using the execution stack Arash Rouhani – Thesis presentation 26/32

Other frames

• Many of the frames are interesting. But the most common one
is probably case continuations, which luckily are unique and
therefore useful when applying getDebugInfo

Contribution — Using the execution stack Arash Rouhani – Thesis presentation 27/32

The problem

• On a crash, the stack is unwounded and the stack reified
• Control is passed to the first catch frame on the stack

• Imagine the function

1 catchWithStack :: Exception e =>
2 IO a -- Action to run
3 -> (e -> Stack -> IO a) -- Handler
4 -> IO a

• What can Stack be?
• Can it really be lazily evaluated?
• We have to be really careful, the stack is a mutable data
structure!

Contribution — Reifying efficiently Arash Rouhani – Thesis presentation 28/32

The problem

• On a crash, the stack is unwounded and the stack reified
• Control is passed to the first catch frame on the stack
• Imagine the function

1 catchWithStack :: Exception e =>
2 IO a -- Action to run
3 -> (e -> Stack -> IO a) -- Handler
4 -> IO a

• What can Stack be?
• Can it really be lazily evaluated?

• We have to be really careful, the stack is a mutable data
structure!

Contribution — Reifying efficiently Arash Rouhani – Thesis presentation 28/32

The problem

• On a crash, the stack is unwounded and the stack reified
• Control is passed to the first catch frame on the stack
• Imagine the function

1 catchWithStack :: Exception e =>
2 IO a -- Action to run
3 -> (e -> Stack -> IO a) -- Handler
4 -> IO a

• What can Stack be?
• Can it really be lazily evaluated?
• We have to be really careful, the stack is a mutable data
structure!

Contribution — Reifying efficiently Arash Rouhani – Thesis presentation 28/32

One idea

• Internally, the execution stack is a chunked linked list.
• What if we freeze the stack and continue our stack in a new
chunk?

•

stop frame

___ frame (old)

catch frame

crash frame

____ frame (old)

____ frame (old)

stop frame

___ frame (old)

catch frame

crash frame

____ frame (old)

____ frame (old)

____ frame (new)

____ frame (new)

____ frame (new)

Contribution — Reifying efficiently Arash Rouhani – Thesis presentation 29/32

One idea

• Internally, the execution stack is a chunked linked list.
• What if we freeze the stack and continue our stack in a new
chunk?

•

stop frame

___ frame (old)

catch frame

crash frame

____ frame (old)

____ frame (old)

stop frame

___ frame (old)

catch frame

crash frame

____ frame (old)

____ frame (old)

____ frame (new)

____ frame (new)

____ frame (new)

Contribution — Reifying efficiently Arash Rouhani – Thesis presentation 29/32

Why an Haskell interface?

• Compare
• gdb style of stack traces
• Catching an exception with the stack trace

• The latter is much more powerful since we have control over it
in Haskell land

• We can:
• Print to screen
• Email it
• Choose to handle the exception based on if frame X is present

on

• Definitely a requirement for software running in production

Contribution — Haskell interface Arash Rouhani – Thesis presentation 30/32

Why an Haskell interface?

• Compare
• gdb style of stack traces
• Catching an exception with the stack trace

• The latter is much more powerful since we have control over it
in Haskell land

• We can:
• Print to screen
• Email it
• Choose to handle the exception based on if frame X is present

on

• Definitely a requirement for software running in production

Contribution — Haskell interface Arash Rouhani – Thesis presentation 30/32

Why an Haskell interface?

• Compare
• gdb style of stack traces
• Catching an exception with the stack trace

• The latter is much more powerful since we have control over it
in Haskell land

• We can:
• Print to screen
• Email it
• Choose to handle the exception based on if frame X is present

on

• Definitely a requirement for software running in production

Contribution — Haskell interface Arash Rouhani – Thesis presentation 30/32

Why an Haskell interface?

• Compare
• gdb style of stack traces
• Catching an exception with the stack trace

• The latter is much more powerful since we have control over it
in Haskell land

• We can:
• Print to screen
• Email it
• Choose to handle the exception based on if frame X is present

on

• Definitely a requirement for software running in production

Contribution — Haskell interface Arash Rouhani – Thesis presentation 30/32

The final Haskell API

• Meh

Contribution — Haskell interface Arash Rouhani – Thesis presentation 31/32

Final remarks

• It seems possible to create an efficient first-class value of the
execution stack that is available post mortem. If my ideas
work out this will be amazing

• This work will not be so super-useful unless it incorporates
with exceptions that Haskell is not aware of, like segmentation
faults. Think foreign function calls and Haskell code like:

unsafeWrite v 1000000000 (0 :: Int)

Conclusion Arash Rouhani – Thesis presentation 32/32

	Title page
	Contents
	Motivation
	Background
	Haskell
	GHC

	The breakthrough in August 2013
	Contribution
	Using the execution stack
	Reifying efficiently
	Haskell interface

	Conclusion

