
AlphaBiscuit - Image Recognition of Letter Biscuits

Arash Rouhani

May 30, 2011

Abstract

Letter biscuits have been around for many decades, but digital im-
age analysis are only beginning to find applications in the real world.
Typing with letter biscuits is joyful for children, using image analysis
one could create electronic activities that involves these biscuits, such
activities could improve literacy among children. This paper take a
statistical approach to automatically classify alphabet biscuits, apply-
ing known techniques from image analysis. Using the classifier, we
then create a word reader that extracts words from an image of let-
ter biscuits. Result wise, the final classifier performs near-perfect in
the cross-validation, however it doesn’t always identify all biscuits in
a clean ’word-image’.

1 Introduction
The recognition of letter biscuits is similar to many other image recognition
problems. Image recognition being well developed already, only little new
research have been made for this project. Rather, a way to combine existing
techniques will be presented.

In order to optimize our recognition method, some remarks should be
made on the type of data we are working with. To our favour, the biscuits
are manufactured, and therefor all biscuits of the same letter looks the same,
both in shape and color. On the other hand the solid body form of biscuits
can suppress distinguishable characteristics. For example, the hole in the
letter A is small, perhaps unnoticeable, due to the overall thickness of the
biscuits. Another problem, when dealing with letter recognition in general
is the multitude of letters to identify from.

The identification process is a standard composition of image processing
concepts. Segmenting, collecting features and then classifying. Initially we
segment a picture to a black and white image containing only the biscuits,
we then collect features from the segmented image. The classification is
based on the features, we classify the unknown biscuit by comparing its
features to a set of known biscuits. In case of there being several biscuits in
the image, a wordizer will organize the letters and read out the word.

1



Figure 1: Two unprocessed images

The segmentation process is well studied for general objects, but the
fact that the biscuits are of the same colors must be used. One challenge is
to develop our own segmentation method. The method created for biscuit
segmentation could also be used for other segmentation purposes where the
data is having similar properties.

2 Data collection
Initially, a mobile camera was used to photograph all the images. Later this
was changed to use a much better camera with more organized photography.
The biscuits are laid on a blank white paper, so the whole background
is white when photographing, this avoids to catch anything with similar
colors as the biscuits on the image, as that would distract the segmentation.
There is no deliberate noise, the lightning is stabilized by the use of camera
lightning and the camera was put stable on a tripod. All the biscuits used
are from the commercial brand named BRAGO BOKSTAVSKEX. Figure 1
contains two typical unprocessed images from the data set.

Among the biscuits, there are only capital letters present. A few letters
are missing. There are totally 177 images of single biscuits that the classifier
trained on. Figure 2 shows all the characters present in the data.

3 Segmentation
When studying the biscuits as an object, it’s clear that the biscuits are only
of one color, but when studying images of biscuits, the pixels corresponding
to the biscuit varies in color because of different lightning. As humans this
don’t bother us, we automatically segment objects apart. In image analysis,
segmenting means to decide which pixels are actually of interest to us. There
are many known segmentation methods available. And they work differently
good for different segmentation tasks.

We want a segmentation method that uses the fact that the biscuits are
of the same color. One sensible segmentation method is to define a set of
the RGB-colors representing usable colors. That means pixels are interesting

2



Figure 2: An image of all the character types present in the data set

3



Figure 3: Two segmented images using thresholding

only if its color is in the set.
In this project, we implemented our segmentation with the above men-

tioned ideas in mind. Since it worked sufficiently well, we did not examine
more possibilities. Thresholding can quite easily implement the set idea in
practice.

3.1 Thresholding

We threshold directly on the color image, treating each pixel individually.
That means that we don’t threshold on grey-scale images, neither do we
turn a color image into grey-scale as an intermediate step.

With expressivity over the three color channels, we can easily define a
reasonable set of biscuit-colors. For example, the biscuits are always more
red than green, and always more green than blue. With thresholding this
property can be easily stated as r > g > b. The exact mathematical thresh-
olding used in our implementation is r > 50 ∧ 30 < g < 200 ∧ b < 150 ∧ r >
1.2∗g∧g > 1.2∗b. Where ∧ stands for logical conjunction. r, g and b stands
for the red, green and blue component of the RGB-component, respectively.

The input images are also of a low JPG quality, meaning that adjacent
pixels can vary more than they are supposed to. To battle this, we also run
a Gaussian filter on each color channel before thresholding.

4 Features
We use the following features:

• Major Axis Length

• Solidity - Also called convexity

4



• Momentum - An easily turnable (easy for a given mass) object has
a high momentum, for example the letter I. Momentum is calculated
by summing for each pixel it’s distance from the center-weight. The
momentum feature can be measured for different exponents on the
distance for each pixel. We used three features of this kind with ex-
ponents 1,2 and 3.

• Eccentricity

• Perimetry

• Number of holes - An A has one hole, but a B has two holes.

It should be noted that the feature Number of holes isn’t fail proof, since
bad segmentation can create holes, or cover actual holes.

4.1 Feature normalization

The features presented above are incomparable to each other. When Ma-
jorAxisLength have been normalized with respect to the area, it can be
compared to another MajorAxisLength value, even though the zooming of
the pictures are not the same. However, the feature MajorAxisLength is
incomparable to features of a different type.

In the configuration in table 1, it’s clear that the Solidity reveals that
the biscuits are different, the MajorAxisLength are however not to different.
However, when naively comparing by subtraction, MajorAxisLength has a
bigger difference. To battle this behavior we use the linear scaling with unit
variance normalization, see equation 1 (Aksoy and Haralick, 2000).

Table 1: Two features of two biscuits

Biscuit 1 Biscuit 2
MajorAxisLength 7.0 8.5
Solidity 0.11 0.9

xnew = x− µ
σ

(1)

After this transformation, all features have a mean of 0 and variance of
1. Now it’s more sensible to compare two different features, or to take the
euclidean distance between two biscuits (set of features).

4.2 Feature selection

With feature normalization taken in place, there is yet no weighting of the
features, perhaps a large difference in MajorAxisLength definitely tells two

5



biscuits apart, meanwhile a large difference in Solidity should be considered
less significant.

We do partially address this problem by using binary weights on the
features, that is equivalent to simply not using some features. This is helpful
when a feature is having a negative impact on the overall classification. We
use the greedy backward elimination method in our feature selection.

5 Classifying unknown biscuits
Classification, in our case, is to determine the letter of an unknown biscuit,
given the features of manually classified biscuits.

We use the simple Nearest Neighbour classifier, with distance defined as
the euclidean distance.

6 Wordizer
If an image contains many letters, the letters are often representing words.
The wordizer is sweeping through the letters and makes one sentence with
the letters by examining the positions of each letter. If visually clear enough,
the wordizer will put whitespace (spaces and newlines) in the sentence where
appropriate.

7 Results
The result section will show the results of a cross-validation process, look at
a failing example and end with a section about reading out a word image.

7.1 Cross-validation

Given the data described, using the classification methods mentioned, we
ran the backwards-elimination process. Starting with the features listed in
the features section, table 2 shows what features where eliminated and for
what gain. The CV-value is the ratio of correctly identified biscuits using
cross validation over the total number of biscuits.

Table 2: Backwards elimination

Feature Previous CV-value
Solidity 97.18%
Number of holes 97.77%

6



Figure 4: An example of a misclassification. The left image is the one we
tried to classify. The middle image is the closest neighbour. The right is the
closest correct neighbour.

So the final feature configuration became: Perimetry, Eccentricity and
all three versions of momentum. That configuration gave us a CV-value of
98.87%. One missclassificatio can be seen in figure 4, an E was misclassified
for an K. The K have a distance of 0.331, and the closest correct character
have a distance of 1.226. Their normalized features can be seen in 3, it is
15 candidates between the K and the closest E.

Table 3: Normalized features of three biscuits in Figure 4

Feature Left Middle Right
Eccentricity 0.55 -0.01 0.56
Perimetry holes 0.87 0.91 -0.24
Momentum degree 1 -0.45 -0.48 -0.46
Momentum degree 2 -0.35 -0.30 -0.36
Momentum degree 3 -0.32 -0.23 -0.34

Running the same procedure on a slightly reduced character-set without
å, ä and ö, the final feature configuration is Perimetry, Eccentricity, Solidity
and momentum with exponent one. That configuration yields a CV-value
of exactly 100%.

7.2 Wordizing

Wordizing the Image in figure 5 gives the following output:

dkxåhing
hxn äåx
uäunted
men

7



Figure 5: An image that can be wordized

The same procedure with the reduced character-set yields the interpre-
tation:

dkeaming
hen are
uaunted
men

The newlines and spaces were automatically identified by the wordizer.
No other wordizing was performed.

8 Discussion
Even though overall simplicity, especially in classification, the cross-validation
results are very good. But on the other side, the input images are friendly
to work with. An undocumented experiment showed a CV-value of about
85% with the old data-set

The feature elimination shows a shaky behavior. For the two data sets,

8



that are very much alike, two quite different set of features was suggested
by backwards-elimination. This might be due to that with the full data-set,
most of the effort by backwards-elimination was to minimize frequent a, å
and ä clashes. But with a data-set without such worries, the elimination
focused on smaller details.

The result of the cross-validation where good, but the wordizing didn’t
perform as good. It’s however not reliable to state the condition of the
project based on one image. It would be interesting to try the wordizer on
more examples.

The misclassification seen in Figure 4 is most likely because of the bad
segmentation at the bottom of the E. At the same time, it’s also obvious
that some feature should be able to clearly distinguish the E from the K.
Perhaps a feature that can detect the ’cracks’ in the top and bottom of the
K would distinguish E from K.

9 Conclusions
The classifier performed outstanding in the cross-validation, but could not
read out a word correctly, however word reading have not been carefully
measured in this report.

All features examined are rotation invariant, but the wordizer requires
a normally angled view to assemble the words correctly. The data worked
on were very simple. If a set of less clean images where to be used, it would
only be necessary to improve the segmentation part.

10 Appendix
All code, images and more is available at the project’s github page .

9

https://github.com/Tarrasch/AlphaBiscuit

	Introduction
	Data collection
	Segmentation
	Thresholding

	Features
	Feature normalization
	Feature selection

	Classifying unknown biscuits
	Wordizer
	Results
	Cross-validation
	Wordizing

	Discussion
	Conclusions
	Appendix

